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Abstract

The time-varying fluid and optical fields of several

cavity configurations have been computed on over-

set mesh systems using the Reynolds-averaged Navier-

Stokes equations and geometric optics. Comparisons

between numerical results and Airborne Optical Ad-
junct (AOA) fight data are made in two-dimensions

for a quieted cavity geometry with two lip-blowing
rates. In three-dimensions, two proposed aero-window

locations for the Stratospheric Observatory For In-

frared Astronomy (SOFIA) are discussed. The sim-

ulations indicate that convection of large shear layer

structures across the aperture cause the blur circle di-
ameter to be three times the diffraction-limited diam-

eter in the near-infrared band.

Nomenclature

c speed of sound

dB decibel, 201og10 <P'>[U/'n_l
2×10 -s

f frequency

h enthalpy

I intensity

k wave number, -2i_
/x" ratio of convection by freestream speed

L characteristic length
rh, mass flow rate

M Mach number
MTF modulation transfer function

n index of refraction

OPD optical path difference

p instantaneous static pressure

q velocity magnitude or dynamic pressure
Re Reynolds number

St Strouhal number, __J_L_
ttl+U 2

SR Strehl ratio,_0 = exp(-c1,2)
t time
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absolute temperature
characteristic time, -£--

h" u e,o

Cartesian velocity components

Cartesian physical space or

aperture coordinates

angstrom, 10 -l° m

angle of attack

Gladstone-Dale constant, (n - 1)STp
momentum thickness

wavelength

density

shear layer spreading rate parameter

phase, 2_ OPD
A

mean quantity

root mean square quantity

fluctuating quantity, f = 7 + f'

Subscripts

STP standard temperature and pressure

T total quantity

,3c freestream quantity

Introduction

The study of light propagating through an unsteady

fluid field has important applications ranging from

laser weaponry to astronomy platforms. Airborne

housing of these systems provides mobility, mainte-

nance, and performance advantages which, in combi-

nation, can be superior to land or space-based alter-

natives. However, prediction of the fluid and optical

behavior of these airborne systems remains a difficult

problem.

This report describes the progress of a computa-

tional approach for use in the design of transonic

aero-windows. The prediction methodology has been

driven by the design of the Stratospheric Observatory

For Infrared Astronomy (SOFIA), the successor to the

Kuiper Airborne Observatory (KAO), which will offer

ten times the resolution of the KAO. Figure 1 depicts

the SOFIA, which will have a 2.5 meter Cassegrain

telescope mounted in a cavity of a Boeing 747SP. In

order to numerically assess the safety and performance

of this platform, extensive evaluation of the computa-

tional methods by comparison against experiment is



Fig. 1: Artist's concept of the SOFIA configuration

necessary.

Many studies of the effect of a fluid field upon

an optical field have been conducted over the past

four decades. Many experimental and theoretical ap-

proaches to the optical distortion problem have been

investigated; only those of which are pertinent to this

transonic aero-window problem are summarized here.

The experimental efforts can be grouped into two cat-

egories: direct measurement methods and techniques

based on aerodynamically inferred quantities. Results

obtained via the latter method are more prevalent be-

cause of practical difficulties in direct measurement

techniques) In fact, only aerodynamically inferred dis-

tortion levels will used for validation of the present

work.

Although early experimental and theoretical efforts

assumed incoherent statistical turbulence, 2' 3, 4 recent

studies have begun to examine the effect of shear layer

structures on electromagnetic field distortion. Using

a passive scalar field from a direct numerical simu-

lation, Truman and Lee 5 found an optimum viewing

angle normal to the hairpin vortices in the homoge-

neous sheared fluid region. They also found analysis

via non-refracting geometric optics to be equivalent to

the parabolized Helmholtz representation of light. Al-

though this class of studies provides excellent insight

into the effects of small-scale structure on the electro-

magnetic field, it is clear that the computational ex-

pense of such methods precludes their near-term use

for the problems under consideration here.

The study of large scale structures in shear layers

has been an active topic of research since they were

observed by Brown and Roshko in 1974. 6 Only re-

cently has the effect of these structures on the optical

field been studied. In 1990, Chew and Christiansen r' s

experimentally observed the effect of shear layer struc-

tures on beam propagation. Tsal and Christiansen 9

used an Euler simulation to determine the optical char-

acteristics of a perturbed free shear layer. It was hy-

pothesized that the effect of the vortical structures on

the optical field could be modelled by a growing sinu-

soidal phase plate.

The numerical modelling of the optical effect of a

cavity-spanning shear layer was presented by Cassady,

Birch, and Terry 1° in 1987. They found their two-

dim,,nsi_mal _.lution to result in poor pr*'diction of

optical distortion. Farris and Clark 11 1_ used tim,'-

mean quantities and empirical evidence to ascertain

the fluctuating density levels required for optical anal-

vsis.

The present effort attempts to determine what por-

tion of the optical path distortion can be resolved using

cell sizes required to obtain an accurate flowfield so-

lution. Towards this end. computed optical distortion

levels are compared to flight or wind tunnel measure-

ments for two- and three-dimensional quieted cavities.

Previous reportsl3' 14 have described the method

development for two-dimensional free shear layers, a

backward-facing step, and a rectangular cavity) s Com-

parison of the computed cavity case with Rossiter's

data showed agreement in the dominant resonant

peaks to within 5 dB. The computed and experimen-

tally observed pressure loading trends were similar

along the cavity walls. In three-dimensions, rectangu-

lar and treated quiet cavity solutions were computed

and compared to experiment. 16 Sound pressure lev-

els along the cavity bulkheads for both the resonating

and quieted geometries were found to be in agreement.

However, although the power spectra of the experi-

ment and computation were similar at low frequen-

cies, numerical dissipation caused a rapid decrease in

energy content at high frequencies.

Although the optical model has been described pre-

viously, 13 this paper documents the extension of the

model and provides new validation information. The

following sections address the method used to predict

the unsteady flows and the resultant optical distortion.

Analysis of the aperture fluid and optical fields for

AOA and SOFIA configurations are presented. For the

two-dimensional AOA geometry, time-varying density

fields and optical path lengths are shown. Short and

long exposure far-field diffraction patterns are com-

puted for a three-dimensional aft cavity SOFIA con-

cept.

Approach

Solution of the aircraft and cavity flowfields were

computed using models for the fluid field, the effect

of turbulence, and the optical distortion. A diagonal

scheme 17 was used for the solution of the Reynolds-

Averaged Navier-Stokes equations, implemented in an

overset grid framework, is Euler implicit time integra-

tion and second-order spatial differencing was used,

with viscous impermeable wall conditions specified as

no-slip, zero normal pressure gradient, and adiabatic.

Information transfer across overset mesh boundaries

was implemented using trilinear interpolation of the

dependent variable vector, Q = [p, pu, pv, pw, e] T. Al-

gebraic turbulence models were used, implemented

with a variable Fm_z cutoff for wall-bounded flows and



a shear layer mo(lel for the cavity aperture region. TM 2_1

The flow solver cost wa._ 13p,_/cell/iteration oil a single

head of t he Numerical Aerodvnanfic Simulat or (NAS)

Cray Y/MP-832.

Generally, a significant offort in grid generation

is required before flow and optical analysis can be-

gin. However. recent advances in algebraic 21 and

hyperbolic 7"_ methods have enabled rapid discretiza-

tion of complex geometries. Hyperbolic grid genera-

tion. which provides spacing and orthogonality control,

was used for the wall-bounded regions, while algebraic

grids were used in shear flow regions including plumes

and wakes. This choice of topology allows simple spec-
ification of turbulent regions and also pernfits the recy-

cling of meshes, useful for configuration changes such
as cavity positioning.

The optical computations documented here use a

refracting-ray method, reported on earlier, which is

limited to studying the effects of the resolved large-
scale structures. 2a The method tesselates a structured

grid into tetrahedra and uses piecewise mean indices
of refraction for each of the tetrahedra. Indices of re-

fraction were computed using n = 1 + d -2-- where
PSTP '

the Gladstone-Dale constant, _3, can be found using

the Cauchy formula.

Assessment of the optical performance of an aero-

window begins by specification of the ray initialization
plane. Integration of the optical path length through

the aero-window is then performed along the rays at

specified time increments in both the streamwise, x,

and crossflow, y, aperture directions. The resultant

OPD(t, x, y) can be used in a complex aperture func-

tion of the form P = A e i't'lt'z'v). Assuming no loss in

transmittance, then the wave amplitude A is unity in
the aperture and zero elsewhere, while the phase of the

wave is computed from OPD(t,z,y) = M._ The au-
2'x'

tocorrelation of the complex aperture function, P • P,

gives the far field diffraction pattern, computed using

a two-dimensional Fourier transform. Time averag-

ing successive short-period diffraction patterns gives a

long exposure result. Integration of the intensity of

this resultant long or short exposure diffraction pat-

tern gives the area for a specified encircled energy level.

From this area the equivalent blur-circle diameter due
to the resolved fluid scales can be found. Inclusion of

the effects of small-scale turbulence could be incorpo-

rated into the computation of long exposure blur cir-
cles by multiplication of the above modulation transfer

function (MTF) with a turbulence MTF. 3' 24

Results and Discussion

Aero-optical simulations of the U.S. Army Airborne

Optical Adjunct (AOA) and the SOFIA configurations

are discussed below. Information pertaining to the

computation and analysis of the unsteady fiowfields,

including, _ri,t resolution and turbulence nm(h'lling, is
given elsewherr.l_ _:_

2-D AOA Cavities

Data available from flight tests of the AOA, 2S shown

in Fig. 2, provides valuable validation information for

Fig. 2: U.S. Army Airborne Optical Adjunct

the present simulations. These two-dimensional nu-

merical simulations were used to determine if optical

quieting methods, particularly aft ramp treatment and
lip-blowing, could be accurately simulated. The flow

about the geometry, depicted in Fig. 3, was computed

in conjunction with two lip-blowing rates for the for-

ward aperture only. The 100_: lip-blowing rate case

corresponded to a rh = 0.42(pu)oc. For the discussion

below, computed high and low lip-blowing rates refer
to 100_ and 1_ of this mass flow rate.

M = .75

Fig. 3: AOA case: instantaneous Mach contours

Computed and flight mean Mach number profiles

are compared in Fig. 4 for two lip-blowing rates, with
instantaneous Mach number contours shown above

each set of profiles. The quantity 0 indicates the angle

from the cupola crest at which the data was measured.
Overall, the Mach number contours, which were aver-

aged over 2000 time steps, show agreement in the max-

imum vorticity as a function of x-station. However,

differences exist between experimental and computa-

tional results at the low-speed edge of the shear layer,
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Fig. 4: AOA case: instantaneous Mach number contours

and mean profiles at (a)low and (b) high lip-blowing rate
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Fig. 5: AOA case: power spectra, low lip-blowing rate

which may be due to blockage in the cavity of the air-

craft that was not computationally represented. The

discrepancy at the upper aft portion of the shear layer

appears to be due to blockage in the computational
model.

Comparisons of pressure spectra at the aft ramp for

the low lip-blowing rate are shown in Fig. 5. The com-

puted spectra can be seen to be quantitatively and

even qualitatively different from flight d:,'a. The com-

puted result lies more than 15 dB belo_ ;Le data. and

a peak in the low lip-blowing rate spectra is clearly

computed, but is not seen in the flight data. The high

lip-blowing rate spectra were similar to that shown in
Fig. 5, albeit without the spectral peak at 340 Hz. _3

It has been noted from experimental evidence 26 that

the frequency of large structures in shear layers is inde-

pendent of axial station and occurs at Strouhal num-
ber of St = /0 = 0.024 + 0.003. where 0 is the

Ul+U2

local shear layer momentum thickness and f denotes

frequency. This phenomena is corroborated by the re-
duction of other researchers' data, _' v 9, 2T, 2s whose

results range from about St = 0.02 to 0.03 for incom-

pressible shear layers.

Momentum thickness can be estimated using

G6rtler's solution, giving 0 = 0.036 _-_'z for a0 = 11.0,
which compares favorably to the empirically deter-

mined correlation _ of 0 = 0.034_z. Using this re-

lationship along with a compressibility correction. 3°

the computed peak in the AOA solution at 340 Hz

corresponds to a Strouhal number of 0.032. For com-

parison, peaks were found in SOFIA experiments and

computations at approximately St = 0.028.

Based upon these experimental observations, it is

hypothesized that large scale shear layer structures are

being resolved. However, the lack of empirical sup-

port from the flight data pressure power spectra is at

odds with this conclusion. The comparison is further
clouded by the reasonable comparison in < p/ > for the

low lip-blowing rate shown in Fig. 6, and the presence

of the organized structures shown in Fig. 7.
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Fig. 6: AOA case: _ profiles with (a)low and (b)
high lip-blowing



Thrve-dimensional effect_ are a possibl,, explana-

tion for tiw discrepancy between computatimt and

flight. Rockwell 31 noted that for sufficiently large

tlevnolds numbers three-dinlensionality reduces coher-

ence in the shear layer. This implies that an error in

the assunlt)tion of planar flow for the small flow os-

cillations considered in these quieted cavity configu-

rations. The evolution of streamwise-oriented vortic-

ity interacting with the primary vortices wouht act to

spread peaks in the reattachment ramp pressure spec-

tra. As a final note. Fig. 5 also depicts data. the ordi-

nate scaled by (q_)Iligm/(q_c)t .... t and the abcissa

by (c_/L)I,gm/(c_/L)t,,,_t, obtained from an AOA

wind tunnel test. a2 The wind tunnel data shows that

a small peak exists where expected according to the

above analysis.

so('iated with tlw sh_'ar layer. Figure 7 shows a rout(mr

plot of _d_, dot)icting the growth and propagation of

those shear laver structures. Also depicted in Fig. 7 is

a schematic of the optical model, with the initial and

final stations of the optical path integration given by r0

and rl. The large structures, associated with a 0.03ux

vertical velocity component, are the primary contribu-

tors of the conlputed density fluctuations of the shear

layer. The speed of the waves, as determined from

Fig. 8, is 0.56u-,_, below the value of 0.66u_ inferred

by Rossiter z5 for rectangular cutouts• yet above the

0.51u_ determined analytically by Roscoe and Han-

key. a3

ro= ..411"

rf :=12"

!
I:::

Fig. 7: AOA case, low lip-blowing rate: instantaneous

contours of(a) p'p_ and (b) _ with schematic of optical
model

Using the computed unsteady density field, aero-

optical effects can be determined. Figure 6 compares

the computed and experimental profiles of the root

mean square of the density fluctuations. Levels of

< p_ > were computed over a time segment of about

90 ms in increments of 0.44 ms. Using the elapsed

time for a particle to convect across the aperture at the

mean shear laver speed as a characteristic time. then

the optical computation was taken for about nine Te.

In Fig. 6, ^I is the rake angle from horizontal, with the

axis of rotation offset from the cupola centerline. De-

termination of the systematic error band on the exper-

imental result is discussed below. The low lip-blowing

rate result underpredicts the magnitude of the peak

in _ however the peak location is in fair agree-
P_z •

ment. The computed results for the high lip-blowing

rate compare poorly to experiment, possibly due to

inadequate grid resolution and/or the increased flow

complexity of the merging shear layers. This type of

active control is presently not a design option for the

SOFIA• therefore further effort toward improvement

of the high lip-blowing case was not warranted.

Further investigation of the low-blowing rate case

revealed the presence of large convecting structures as-

0 10 20 IIO _1

StaUon, x, inches

Fig. 8: AOA case: contours of OPD'(x,t)[ in.] along

aperture, low lip-blowing rate

In 1990, Chew and Christiansen 8 and Tsai and

Christiansen ° deduced that a free shear layer model

of a sinusoidal phase delay growing in x would pro-

duce results similar to those observed in both compu-

tation and experiment. Figure 8 displays behavior of a

similar nature for the aero-window problem of concern

here.

Comparisons of integrated aero-optical quantities,

shown in Fig. 9, reveal slight overprediction for the

low lip-blowing case and, given the < p' > profiles,

expected underprediction for the high lip-blowing rate

case. Also shown in Fig. 9 are the < OPD' > for two

additional integration paths, shown to demonstrate

that most of the optical distortion is caused by the

shear layer.

The result for the integration path which extends

from r0 = -8" to r I = 12" displays an increment in

< OPD' > of about (7 x 10-T) '' from the 7" path

length case which passes through the shear-layer alone.

The path initialized above the shear layer, from r0 =

4" to r! = 12", shows a small < OPD' > indicating



that < p' > at,_ve the ,hear law'r is small. Finally.

the tinw m('an optical path difference. ()PD. can be

seen to contribute curvature to the wavefronts ms the

light propagates through the shear layer. The optical

clarity of the shear laver was determined using a 3 =

2..584 x 10 -_, matching the value which wa.,_ used to

reduce the experimental data.
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Fig. 9: AOA case: streamwise variation of optical path

difference quantities

The analytic result for the < OPD' >, which goes

like x, is found from 34

(¥)2 = (2rr<OPD'>) 2A

= 9_ -2 --T 3 /

a Jo \ Oy]
dy

Derivation of the model, which utilizes time-mean

quantities to determine < OPD' >, is given by

Bogdanoff. 34 This analytic result assumes an index-

matched shear layer with a sinusoidal n profile, n(y) =

b3sin ( 2._2.r.___ The constants, -- = 0.0091
2 _2Lso_.,_]" a

and Lso , 1.31 ,.= 1.31(0.18dm1).areempiric 

r_'lations. The virtual origin of the shear laver is plac,.d

sir .r = 0" to obtain this analytic result. As shown in

Fig. 9, the analytic gradient in < OPD' > is in good

agreement with flight data.

Reduction of Experimental Data

The reduction of the data obtained from experi-

ment _ is noted here to delineate the appro:dmations

used and estimate systematic error bounds in the op-

tical path distortion levels. Values of p' are computed

from assumptions of quasi-steady flow:

hT = cpT (l + _2 1M_ )

Differentiation with respect to t gives

17T_. = PP_ - pp_ + uu ''7 - 1
P2 2'

Using (pu )' = pu' + p' u then

7" p' 1)M_(Pu)'= - + - t)i + x] -;'
T p pu p

The experimental observations against which the com-

puted results are compared assume simultaneously

small fluctuations in pressure and total ternpera-

ture 3_, 37 resulting in

p' 1 (pu)'
- (_ _ 1)_: _ + 1 P-'ff (1)

Mean Mach number and density profiles are deter-

mined from isentropic relations, while _ is propor-
pu

E'
tional to the voltage fluctuation, --g-, obtained from

hot film probes. The optical path disturbance is then

found from _

(OPD')_=2( 'p@Tp)2_oL<p'>_l_dr (2)

where/_ is the turbulent eddy size relative to the shear

layer width, determined from cross correlation data to

be typically about 15(Zc.

The few available independent measurements 3r' as

indicate that pressure fluctuations of about 2% of

freestream static pressure occur in the shear layer

spanning the aperture of a quieted cavity geometry.

In fact, Hahn :5 reported pressure fluctuations of 8_:

from shear layer rake measurements, however these in-

clude the dynamic pressure component normal to the

orifice as well. Pressure fluctuation levels can also be

inferred from sound pressure levels in the cavity, ob-

served to be at least 130 dB for the AOA case. Shear

layer total temperature fluctuations of about 1_ have

also been reported for this Maeh regime. 38 The present

low lip-blowing computation found a < p_ >_ 1% and

6



a < T'r >_ 0.S'/ in thr shrar lavrr. Tile assumption

of < Tj- >, < t / >_ I} in a shear layrr i_ therefore

questionable, and is used to estimate systematic ex-

perimental error bounds.

The determination of the error in < p_ > due to

background noise levels begins by assuming the pas-

sage of a compression wave paralM to the static pres-

sure port in the wake rake. Normal reflection of the

wave would impart a larger deviation f: ;t < p' >

as computed by Eq. 1. Utilizing Ggrtler's free shear

layer solution to provide u(r), assuming a cavity tem-

perature recovery factor of unity, and holding mean

static pressure constant through the layer, then p(r)

is defined. The sensitivities of _ to _2 and r_ are
Tr

1 (1+(';'-1)M2/2) respectively. Using+:_-:)M_+t and :F (__1)M2+1 ,

a compression or rarefaction wave of strength < pJ >

through the shear layer, then local values of p_ due to

wave passage are defined. This value of p_ provides

the error bound about the value obtained from Eq. 1,

which assumes negligible < p_ > and < T_- >. Taking

shear layer pressure fluctuation levels corresponding

to 135 dB and a velocity ratio r = 0.1, then the sys-

tematic error in the density fluctuations is 0.13_ at

the shear layer center. Figure 6 shows the resultant

systematic error bars in < pr >.

From Eq. 2 the value of < pr > is linearly propor-

tional to < OPD' >. The error in < OPD' > can be

found by using a conservative within-system error of

0.05% in <_.K.2_ gleaned from Fig. 6, plus the systematic
p

error from t'_le above analysis. The resultant error bar

{)lotted in Fig. 9.
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Fig. 10: Forward cavity SOFIA cases: Comparison of

sound pressure levels

namic measurements were used to infer distortion.

Comparison of experimental and numerical density

fluctuations are shown in Fig. ll, where < p_ > can be

seen to be severely underpredicted. Although peaks

in the density fluctuations were computed, the highly-

ordered shear layer structures similar to those found in

the AOA study were not observed. Differences may be

attributable to grid coarseness or within-system mea-

surements errors.

Forward Cavity SOFIA

Wind tunnel tests, completed in 1990, allowed vali-

dation of cavity acoustic response and optical charac-

teristics. The cavity environment results are summa-

rized in Fig. 10 for both resonant and quieted config-

urations. 13 Aerodynamic measurements in the shear

layer were used to infer optical quantities for the qui-

eted cavity, configuration 100.

Following computation of the unsteady flow, the op-

tics code was applied to the computed density field

obtained for configuration 100 from t = 0 to 7.8 ms.

Ten rays were propagated through 110 instantaneous

density fields in time intervals of _t = 70.6/Ls. The op-

tical measurement was taken for about five Tc, again

using the elapsed time for a shear layer structure to

convect across the aperture as the characteristic time.

The forward cavity SOFIA results presented here are

for a computational plane at appro:,dmately the cross

flow center of the aperture, which will provide only a

streamwise variation in optical properties. The numer-

ical results are presented compared to previous anal-

ysis 34 and experiment ]6 in which shear layer aerody-

.................... "'37.8" ""
xl41.8'"

o .o_ ._ .oso .o_ .o2 ._ o

' PlO

.01 .ha e_t

Fig. 11: Configuration 100: density fluctuation at cross-

flow center of aperture

The optical wavefront distortion through the con-

figuration 100 aero-window is summarized in Fig. 12.

Figure 12a shows that the distortion model applied

through the shear layer alone underpredicts the data

determined analytically and experimentally. However,

the computed trend is generally consistent with the

data. At the streamwise center of the aperture, the

aerodynamically inferred < OPD' > at two additional



spanwisr locations are shown. These points provide an
estimate of the crossflow variation in e.',:prrimontal dis-
tortion levels.

37 42 47

Stallon, x,

Fig. 12: Configuration 100: comparison of wavefront
distortion

Figure 12b depicts computed < OPD' > for ray

propagation originating below the secondary mirror,

r0 = -3.7". and above the shear layer, r0 = 2.3".

Comparison of the computed results show an incre-

ment in < OPD' > below the secondary mirror. This

distortion increment appears to be caused by a jet of

re-entrant fluid originating from the shear layer im-

pinging on the aft ramp. Finally, Fig. 12c shows that

curvature is imparted to the mean optical field. The
dip in the fluctuating and mean OPD levels at z = 42"

is caused by the presence of the secondary mirror, in
which the index of refraction, n, was fixed at unity.

Aft Cavity SOFIA

Forward placement of the telescope in a favorable

pressure gradient region has an advantage in terms of

an optically thin boundary layer. However, the fuse-

lage moldline and structural complexities forward of

the wing present considerable manufacturing difficul-

ties. An alternative site for the telescope aft of the

wing reduces the modification costs and permits the

use of a larger usable cavity volume. However, an aft

cavity site has potential problems of scattered light

emitted from engines and plumes, an optically thick

boundary-layer, unknown cavity response, and possi-

bly poor empennage flow behavior at off-design condi-
tions.

Figure 13 depicts the simplified geometry used to
address some of these concerns: horizontal and vertical

stabilizer geometry was unavailable for this simulation.

Details of this flight condition simulation are available
elsewhere.X4

Fig. 13: Aft SOFIA case: Surface Cp and plume tem-

perature contours

The acoustic response of the aft cavity is compared

to scaled data from the forward cavity experiment in

Fig. 14. The computed result is taken from a location

__"01 " ',:_:. •

70 I ............ ".......... ,

_._rl_,aNd Fo,rwmd cmvH, y

10 0 101 10 2 10 3

Frequency, t, I.tz

Fig. 14: Aft SOFIA case: Power spectra comparison

on the aft ramp, while the experiment is from a loca-

tion within the cavity. The agreement of spectra is rea-

sonable to about 100 Hz, above which grid coarseness

dissipates energ_v rapidly. _4 Figure 14 shows peaks at

60 and 110 Hz, the latter corresponding to a Strouhal
number of 0.028.

During the aft cavity SOFIA computation the en-

tire aperture density field was saved in increments of



lI.68m._. _'w'rvfly,.flow _olution _t,'p,.I.'_hl,_thi_ d,'n-

>itv field, prot)agati(m r)f a plan,' wavo through the

aperture' revealod variations in tlw wavefront (listor-

tion. as shown in Fig. 15. These ordered variations

in OPD, indicative of shear layer structures in tile

aperture, iinpact the aft ramp at a frequency of 110

Hz. giving a St = 0.(/28. Figure 1.5 shows maximum

distortions of about one wavelength. -I-AD. with a re-

sultant maximum < OPD' > of approximately 0.TAD.

Computation of the OPD(t. _', 9) was performed for a

64 x 64 array of rays normal to the aperture and ini-

tialized just above the secondary mirror. The optical

integration was performed over 8 T_.

tffito t=t o+2.7n_ tffito+5.4ms

Fig. 15: Aft SOFIA case: Sample wavefront distortion

history

Using these phase distortion levels, far field diffrac-

tion patterns were then computed. Figure 16 depicts

the diffraction-limited Airy pattern for reference, and

both instantaneous and time-averaged exposures. The

instantaneous exposure pattern shows some evidence

of speckle, with a large reduction in central peak in-

tensity. This spreading of energy is manifested in the

computed Strehl ratio of 0.34.

Finally, Fig. 17 shows that the large scale structures

in the shear layer cause the equivalent 80_, blur cir-

cle to be three times the diameter of the diffraction-

limited case. However, as can be seen in Fig. 16, the

blurring in the streamwise direction is worse than in

the crossflow direction. Note that the because the

small scale fluid motion is modelled when using the

Reynolds-averaged Navier-Stokes equations, the com-

puted blur circle is much smaller than actually ob-

served, a_

0 1 2 3
Arcsec

Fig. 16: Aft SOFIA case: Far field diffraction patterns
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Fig. 17: Aft SOFIA case: Normalized integrated intensity
distributions

Conclusions

Computations of quieted cavity configurations have
shown convection of large scale flow structures across

the aperture. The shedding frequency of these struc-

tures compare reasonably well with experimentally de-

termined shear layer Strouhal numbers. The con>

puted results indicate that three-dimensional effects on

the shear layer spanning a quieted cavity can be signifi-
cant. The differences in two- and three-dimensional re-

sults are manifested in the spectra of the pressure loads

and in the magnitude of the optical wavefront distor-

tion. Since the primary contributors to the computed

OPD' were the large scale structures, computations of
the Strehl ratio were found to be reasonable. However,

because the small scale fluid motion is modelled, the

blur circle diameter is significantly underpredicted.

Further improvements to the prediction of optical

performance may be found from investigation of shear

regions with direct Navier-Stokes methods s or use of a

turbulence MTF? 4 Finall)_ although low Reynolds and

Mach number number experiments show large struc-
ture formation, direct OPD measurements at realistic
conditions would be useful for validation of numerical

aero-optical studies of this type.
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